$P_3N_3F_5NPF_2NPF_2NPF_5^{2-}$: a Cyclophosphazene with a Phosphazene Side-chain Dianion by F⁻-induced Ring-opening of $P_3N_3F_6$

Enno Lork, Paul G. Watson and Rüdiger Mews*

Institut für Anorganische und Physikalische Chemie, Universität Bremen, NW2, Postfach 33 04 40, Loebener Straße, D-28359 Bremen, Germany

 $[(Me_2N)_3S+]_2$ $[P_3N_3F_5NPF_2NPF_2NPF_5]^{2-}$ is prepared from the reaction of $(Me_2N)_3S+Me_3SiF_2^-$ and $P_3N_3F_6$ and its X-ray crystal structure determined.

Recently, we reported the addition of fluoride ion to sulfanuric fluoride $[NS(O)F]_3$ by $(Me_2N)_3S^+Me_3SiF_2^-$, (TASF), to give TAS⁺ $[(NS(O)F)_2(NS(O)F_2)]^{-.1}$ Reactions of the isoelectronic cyclophosphazene $(NPF_2)_3$ with fluoride ion are described in the literature: with CsF opening of the ring system probably occurs, leading to formation of Cs⁺NPF_2NPF_2NPF_3^{-.2} With NaF similar results were obtained, but subsequent degradation of the primary product was observed.³ Characterization of the product was based mainly on IR spectroscopy and from the complexity of the (unassigned) ¹⁹F NMR spectrum of the primary product the authors suggested the above-mentioned acyclic structure of the anion.²

Different results are obtained when fluoride ion is added to $(NPF_2)_{3,4}$ **1** by TASF,⁵ **2** in homogeneous solution.

The reaction between $P_3N_3F_6$ and TASF occurs at 235 K in MeCN to give TAS⁺ $P_3N_3F_7^-$ 3 (Scheme 1). This species was identified by ³¹P and ¹⁹F NMR spectroscopy.[†] The ³¹P NMR spectrum at 235 K shows a well-resolved octet ($J_{PF} = 258$ Hz) at $\delta - 5$ and the ¹⁹F NMR spectrum a corresponding quartet at $\delta - 46$. This coupling is significantly smaller than ¹ J_{PF} in 1 (868 Hz) and is due to an averaging of ¹ J_{PF} and ³ J_{PF} . Only one resonance for 3 in both the ³¹P and ¹⁹F NMR spectra is observed indicating that the anion is undergoing exchange and since we observe P–F couplings this must be an intramolecular exchange process.

At this temperature the ${}^{31}P$ and ${}^{19}F$ NMR spectra show signals corresponding to the dianion $P_3N_3F_5NPF_2NPF_2NPF_5^{2-4}$ and on slight warming the signals due to **3** disappear and only signals due to **4** are observed.

Apart from the clear resonance of the NPF₅ group at δ -137, the ³¹P NMR spectrum of **4** is difficult to assign as the ring and chain phosphorus resonances all occur in the region δ +40 to δ -70 as broad, unresolved multiplets.

The ¹⁹F NMR spectrum of $\hat{4}$ is easier to assign, with the expected 6 F resonances clearly observed. An AB₄X system is seen for the NPF₅ group at δ_{Feq} -43.8 and δ_{Fax} -53.5. The four equivalent ring-fluorine atoms, F₅ are observed as a complicated multiplet at δ -68.8, F₄ the fifth ring-fluorine is assigned from the resonance intensity at δ -47.2. Unfortunately, although both NPF₂ groups could be identified, δ -61.5 and δ -63.5, it was not possible to distinguish which is due to F₂ and which to F₃.

4 was isolated quantitatively as a stable, colourless solid (mp 64 °C) and single crystals were grown by diffusion of diethyl ether into a MeCN solution. The X-ray structure‡ of the anion is presented in Fig. 1. The average P–N bond length to the phosphorus centres in the phosphazene side-chain is approximately 154 pm, the P(1)–N(1) distance to the hexacoordinated phosphorus is significantly longer [169.4(9) pm]. Contrary to planar cationic oligochlorophosphazenes⁶ and polyfluorophosphazenes (NPF₂)_n⁷ the phosphazene side chain in **4** is puckered. P(1), P(2) and P(3) deviate from the N(1)–N(2)–N(3) plane by +19, +44 and +40 pm, respectively.

Substitution of fluorine atoms in $P_3N_3F_6$ by amino groups is reported to increase the average endocyclic P–N bond distances,^{8,9} similar results are obtained for the $P_3N_3F_5$ -fragment in 4. More pronounced than for $P_3N_3F_5NH_2$,⁸ and 2,2- $P_3N_3F_3(NH_2)_2$ ⁹ the P–N bond lengths adjacent and opposite to the substituted phosphorus centre increase compared to $P_3N_3F_6$ (P–N = 152.1 pm).¹⁰ The bonding situation in the $P_3N_3F_5$ -fragment of 4 might be described as in Fig. 2, with a high negative charge at N(5).

Cyclophosphazenes are starting materials for polyphosphazenes,¹¹ ring-opening is observed at high temperatures and is catalysed by Lewis acids.¹² The anion in **4** might be considered as the first step in a base induced polymer formation from cyclic precursors.

Fig. 1 The molecular structure of $P_3N_3F_5NPF_2NPF_2NPF_5^{2-}$. P–N bond lengths (pm) are: P(1)–N(1) 169.4(9), N(1)–P(2) 152.4(8), P(2)–N(2) 154.1(9), N(2)–P(3) 156.8(10), P(3)–N(3) 152.0(11), N(3)–P(4) 155.1(10), P(4)–N(4) 161.0(9), N(4)–P(5) 152.9(10), P(5)–N(5) 161.5(10), N(5)–P(6) 156.3(10), P(6)–N(6) 153.4(10), N(6)–N(4) 164.1(11). Approximate P–F bond lengths are: P(1)–F 164.1, P(2)P(3)–F 155.1, P(4)–F 158.2(9), P(5)–P(6)–F 156.1.

1718

Neutral cyclophosphazenes with phosphazene side-chains are known P₃N₃F₅NPF₂(NPCl₂)₂Cl, e.g. is formed in a multistep synthesis from P₃N₃F₆, (Me₃Si)₂NH, PF₃Cl₂, and PCl₅, respectively.¹³

We are grateful to the Fonds der Chemischen Industrie for Financial Support. We thank Professor U. Behrens (Hamburg) for helpful discussions.

Received, 12th May 1995; Com. 5/03019F

Footnotes

 \dagger NMR data [ref. 85% $\rm H_3PO_4$ (for $^{31}P)$ and CCl_3F (for $^{19}F)$], ^{31}P and ^{19}F 1 NMAR data [ref. 85% H₃PO₄ (107 ³⁴P) and CCl₃F (for ¹⁹F)]. ³¹P and ¹⁹F NMR data for 3: $\delta_{P} - 5$, $\delta_{F} - 48$, $J_{PF} 258$ Hz. ³¹P and ¹⁹F NMR data for 4: $\delta_{P_1} - 137$, $\delta_{Feq} - 43.8$, $\delta_{Fax} - 53.5$, $\delta_{F2,F3} - 61.5$ and -63.5, $\delta_{F4} - 47.2$, $\delta_{F5} - 68.8$ ¹ J_{P1Feq} 714, ¹ $J_{P1Fax} 660$, ¹ J_{P1Feq} 714, ¹ $J_{P2,3F2,3}$ 939, \approx 900, ¹ J_{P4F4} ca. 800 ¹ J_{P5F5} (Higher order resonance, unable to be assigned), ² J_{FeqFax} 36, ³ J_{P2Feq} 29, ⁴ J_{FeqF2} 4 Hz. ‡ Crystal data: C₁₂H₃₆F₁₄N₁₂P₆S₂, crystal dimensions 0.80 × 0.60 × 0.05 mm, M = 864.47, T = 173 K, triclinic, a = 859.8(2), b = 1005.0(2), c = 2196.4(4) pm, $\alpha = 91.76(3)^{\circ}$ B = 96.42(3)^o y = 109.77(3)^{\circ} U =

2196.4(4) pm, $\alpha = 91.76(3)^{\circ}$, $\beta = 96.42(3)^{\circ}$, $\gamma = 109.77(3)^{\circ}$, U = 1770.1(6) Å³, space group *P*I, Z = 2, $D_c = 1.622$ Mg m⁻³, Mo-K α radiation, $\lambda = 0.71073$ Å, μ (Mo-K α) = 5.24 cm⁻¹, F(000) = 880. R = 0.0747, w $R_2 = 0.1652$ for 4610 independent diffractometer reflections out of 5070 measured ($0 \le h \le 9, -11 \le k \le 10, -24 \le l \le 24, 2.54 \le \theta \le 10$ 22.5°). Atom coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- 1 E. Lork and R. Mews, J. Chem. Soc., Chem. Commun., 1995, 113.
- 2 W. M. Douglas, M. Cooke, M. Lustig and J. K. Ruff, Inorg. Nucl. Chem. Lett., 1970, 6, 409.
- 3 E. Niecke, Dissertation, Göttingen, 1969.
- 4 R. Schmutzler, Inorg. Synth., 1967, 9, 76.
- 5 W. J. Middleton, US Pat. 3940402, 1976, Org. Synth., 1985, 64, 221.
- 6 H. R. Allcock, N. M. Tollefson, R. A. Arcus and R. R. Whittle, J. Am. Chem. Soc., 1985, 107, 5166.
- 7 H. R. Allcock, R. L. Kugl and E. G. Stroh, Inorg. Chem., 1972, 11, 1120.
- 8 S. Pohl and B. Krebs, Chem. Ber., 1975, 108, 2934.
- 9 S. Pohl and B. Krebs, Chem. Ber., 1976, 109, 2622.
 10 M. W. Dugill, J. Chem. Soc., 1963, 3211.
- 11 H. R. Allcock, Acc. Chem. Res., 1979, 12, 351.
- 12 C. W. Allen, Coord. Chem. Rev., 1994, 130, 137 and references therein.
- 13 H. W. Roesky and W. Grosse-Böwing, Chem. Ber., 1971, 104, 653.